# Illustrates smart prediction
pneumo = transform(pneumo, let=log(exposure.time))
fit = vglm(cbind(normal,mild, severe) ~ poly(c(scale(let)), 2),
propodds, data=pneumo, trace=TRUE, x=FALSE)
class(fit)
(q0 = head(predict(fit)))
(q1 = predict(fit, newdata=head(pneumo)))
(q2 = predict(fit, newdata=head(pneumo)))
all.equal(q0, q1) # Should be TRUE
all.equal(q1, q2) # Should be TRUE
head(predict(fit))
head(predict(fit, untransform=TRUE))
p0 = head(predict(fit, type="res"))
p1 = head(predict(fit, type="res", newdata=pneumo))
p2 = head(predict(fit, type="res", newdata=pneumo))
p3 = head(fitted(fit))
all.equal(p0, p1) # Should be TRUE
all.equal(p1, p2) # Should be TRUE
all.equal(p2, p3) # Should be TRUE
predict(fit, type="terms", se=TRUE)
Run the code above in your browser using DataLab