Learn R Programming

BEKKs (version 1.4.5)

predict: Forecasting conditional volatilities with BEKK models

Description

Method for predicting a N-dimensional BEKK covariances.

Usage

# S3 method for bekk
predict(object, n.ahead = 1, ci = 0.95, ...)

# S3 method for bekka predict(object, n.ahead = 1, ci = 0.95, ...)

# S3 method for dbekk predict(object, n.ahead = 1, ci = 0.95, ...)

# S3 method for dbekka predict(object, n.ahead = 1, ci = 0.95, ...)

# S3 method for sbekk predict(object, n.ahead = 1, ci = 0.95, ...)

# S3 method for sbekka predict(object, n.ahead = 1, ci = 0.95, ...)

Value

Returns a S3 class "bekkForecast" object containing the conditional volatility forecasts and respective confindence bands.

Arguments

object

A fitted bekk model of class "bekkFit" from the bekk_fit function

n.ahead

Number of periods to forecast conditional volatility. Default is a one-period ahead forecast.

ci

Floating point in [0,1] defining the niveau for confidence bands of the conditional volatility forecast. Default is 95 per cent niveau confidence bands.

...

Further parameters to be passed on to the function.

Examples

Run this code
#'
data(StocksBonds)
obj_spec <- bekk_spec()
x1 <- bekk_fit(obj_spec, StocksBonds, QML_t_ratios = FALSE, max_iter = 50, crit = 1e-9)

x2 <- predict(x1, n.ahead = 1)


Run the code above in your browser using DataLab