# NOT RUN {
# prepare models
# NOTE: FIT::train() returns a nested list of models
# so we have to flatten it using FIT::train.to.predict.adaptor()
# before passing it to FIT::predict().
models <- FIT::train(..)
models.flattened <- FIT::train.to.predict.adaptor(models)
# load data used for prediction
prediction.attribute <- FIT::load.attribute('attribute.2009.txt')
prediction.weather <- FIT::load.weather('weather.2009.dat', 'weather')
prediction.expression <- FIT::load.expression('expression.2009.dat', 'ex', genes)
prediction.results <- FIT::predict(models.flattened,
prediction.attribute,
prediction.weather)
# }
Run the code above in your browser using DataLab