Learn R Programming

norm (version 1.0-11.1)

prelim.norm: Preliminary manipulations for a matrix of incomplete continuous data.

Description

Sorts rows of x by missingness patterns, and centers/scales columns of x. Calculates various bookkeeping quantities needed for input to other functions, such as em.norm and da.norm.

Usage

prelim.norm(x)

Value

a list of thirteen components that summarize various features of x after the data have been centered, scaled, and sorted by missingness patterns. Components that might be of interest to the user include:

nmis

a vector of length ncol(x) containing the number of missing values for each variable in x. This vector has names that correspond to the column names of x, if any.

r

matrix of response indicators showing the missing data patterns in x. Dimension is (S,p) where S is the number of distinct missingness patterns in the rows of x, and p is the number of columns in x. Observed values are indicated by 1 and missing values by 0. The row names give the number of observations in each pattern, and the column names correspond to the column names of x.

Arguments

x

data matrix containing missing values. The rows of x correspond to observational units, and the columns to variables. Missing values are denoted by NA.

References

See Section 5.3.1 of Schafer (1996).

Examples

Run this code
data(mdata)
s <- prelim.norm(mdata)  #do preliminary manipulations 
s$nmis[s$co] #look at nmis 
s$r #look at missing data patterns

Run the code above in your browser using DataLab