Learn R Programming

VGAM (version 1.1-4)

prentice74: Prentice (1974) Log-gamma Distribution

Description

Estimation of a 3-parameter log-gamma distribution described by Prentice (1974).

Usage

prentice74(llocation = "identitylink", lscale = "loglink",
           lshape = "identitylink", ilocation = NULL, iscale = NULL,
           ishape = NULL, imethod = 1,
           glocation.mux = exp((-4:4)/2), gscale.mux = exp((-4:4)/2),
           gshape = qt(ppoints(6), df = 1), probs.y = 0.3,
           zero = c("scale", "shape"))

Arguments

llocation, lscale, lshape

Parameter link function applied to the location parameter \(a\), positive scale parameter \(b\) and the shape parameter \(q\), respectively. See Links for more choices.

ilocation, iscale

Initial value for \(a\) and \(b\), respectively. The defaults mean an initial value is determined internally for each.

ishape

Initial value for \(q\). If failure to converge occurs, try some other value. The default means an initial value is determined internally.

imethod, zero

See CommonVGAMffArguments for information.

glocation.mux, gscale.mux, gshape, probs.y

See CommonVGAMffArguments for information.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, and vgam.

Warning

The special case \(q = 0\) is not handled, therefore estimates of \(q\) too close to zero may cause numerical problems.

Details

The probability density function is given by $$f(y;a,b,q) = |q|\,\exp(w/q^2 - e^w) / (b \, \Gamma(1/q^2)),$$ for shape parameter \(q \ne 0\), positive scale parameter \(b > 0\), location parameter \(a\), and all real \(y\). Here, \(w = (y-a)q/b+\psi(1/q^2)\) where \(\psi\) is the digamma function, digamma. The mean of \(Y\) is \(a\) (returned as the fitted values). This is a different parameterization compared to lgamma3.

Special cases: \(q = 0\) is the normal distribution with standard deviation \(b\), \(q = -1\) is the extreme value distribution for maximums, \(q = 1\) is the extreme value distribution for minima (Weibull). If \(q > 0\) then the distribution is left skew, else \(q < 0\) is right skew.

References

Prentice, R. L. (1974). A log gamma model and its maximum likelihood estimation. Biometrika, 61, 539--544.

See Also

lgamma3, lgamma, gengamma.stacy.

Examples

Run this code
# NOT RUN {
pdata <- data.frame(x2 = runif(nn <- 1000))
pdata <- transform(pdata, loc = -1 + 2*x2, Scale = exp(1))
pdata <- transform(pdata, y = rlgamma(nn, loc = loc, scale = Scale, shape = 1))
fit <- vglm(y ~ x2, prentice74(zero = 2:3), data = pdata, trace = TRUE)
coef(fit, matrix = TRUE)  # Note the coefficients for location
# }

Run the code above in your browser using DataLab