meta
.## S3 method for class 'meta':
print(x, sortvar,
comb.fixed=x$comb.fixed,
comb.random=x$comb.random,
prediction=x$prediction,
details=FALSE, ma=TRUE, backtransf=x$backtransf,
digits=max(4, .Options$digits - 3), ...)## S3 method for class 'metabias':
print(x, ...)
## S3 method for class 'meta':
summary(object,
comb.fixed=object$comb.fixed, comb.random=object$comb.random,
prediction=object$prediction,
backtransf=object$backtransf,
bylab=object$bylab, print.byvar=object$print.byvar,
bystud=FALSE, print.CMH=object$print.CMH,
warn=object$warn, ...)
## S3 method for class 'summary.meta':
print(x, digits = max(3, .Options$digits - 3),
comb.fixed=x$comb.fixed, comb.random=x$comb.random,
prediction=x$prediction,
print.byvar=x$print.byvar, print.CMH=x$print.CMH,
header=TRUE, backtransf=x$backtransf,
bylab.nchar=35, ...)
cilayout(bracket="[", separator="; ")
meta
, metabias
, or
summary.meta
.meta
.x$TE
).backtransf=TRUE
, results for
sm="OR"
are printed as odds ratios rather than log odds
ratios and results for sm="ZCOR"
are printeprint.default
.summary.meta
in connection with metacum
or
metainf
should result in a warning.summary.meta
with the
following elements:byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not
missing.update.meta
(or directly in R
functions metabin
, metacont
,
metagen
, metacor
, and
metaprop
). Review Manager 5 (RevMan 5) is the current software used for
preparing and maintaining Cochrane Reviews
(read.rm5
. If a meta-analysis is then
conducted using function metacr
, information on subgroups is
available in R (components byvar
, bylab
, and
print.byvar
, byvar
in an object of class
"meta"
). Accordingly, by using function metacr
there is
no need to define subgroups in order to redo the statistical analysis
conducted in the Cochrane review.
Note, for an object of type metaprop
, starting with version
3.7-0 of meta, list elements TE
, lower
and
upper
in element study
correspond to transformed
proportions and confidence limits (regardless whether exact
confidence limits are calculated; argument ciexact=TRUE
in
metaprop function). Accordingly, the following results are based on
the same transformation defined by argument sm
: list elements
TE
, lower
and upper
in elements study
,
fixed
, random
, within.fixed
and
within.random
.
R function cilayout can be utilised to change the layout to print
confidence intervals (both in printout from print.meta and
print.summary.meta function as well as in forest plots). The default
layout is "[lower; upper]". Another popular layout is "(lower -
upper)" which is used throughout an R session by using R command
cilayout("(", "- ")
.
Higgins JPT & Thompson SG (2002), Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539--1558.
update.meta
, metabin
, metacont
, metagen
data(Fleiss93cont)
meta1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, data=Fleiss93cont, sm="SMD")
summary(meta1)
summary(update(meta1, byvar=c(1,2,1,1,2), bylab="group"))
forest(update(meta1, byvar=c(1,2,1,1,2), bylab="group"))
Run the code above in your browser using DataLab