# NOT RUN {
## Some artificial data
set.seed(123)
n <- 50
x <- runif(n, -2, 2) ## Covariate values
y <- rweibull(n, shape = .5*(x + 4)) ## True lifetimes
c <- rexp(n) ## Censoring values
p <- exp(2*x)/(1 + exp(2*x)) ## Probability of being susceptible
u <- runif(n)
t <- ifelse(u < p, pmin(y, c), c) ## Observed times
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0) ## Uncensoring indicator
data <- data.frame(x = x, t = t, d = d)
## Calling 'print()' with an object of class 'npcure' created by
## 'latency()'
S1 <- latency(x, t, d, data, x0 = c(0, .5), h = c(1, 1.5))
## In this case (latency estimation with local bandwidths and without
## confidence bands), the 'wide' format is used by default
S1
print(S1, how = "wide")
print(S1, how = "long")
## How to control the number of significant digits of the output, and
## how to abbreviate the output
print(S1, digits = 5, head = TRUE, n = 4)
## Calling 'print()' with a 'npcure' object created by 'probcure()'
q1 <- probcure(x, t, d, data, x0 = c(0, .5), h = c(.5, 1, 1.5), local =
FALSE, conflevel = .95)
## Only the 'long' format is available when confidence bands are
## computed
q1
print(q1, how = "long")
print(q1, how = "wide")
# }
Run the code above in your browser using DataLab