"rma.uni", "rma.mh", "rma.peto", and "rma.glmm".## S3 method for class 'rma.uni':
print(x, digits=x$digits, showfit=FALSE, signif.stars=getOption("show.signif.stars"),
signif.legend=signif.stars, ...)
## S3 method for class 'rma.mh':
print(x, digits=x$digits, showfit=FALSE, \dots)
## S3 method for class 'rma.peto':
print(x, digits=x$digits, showfit=FALSE, \dots)
## S3 method for class 'rma.glmm':
print(x, digits=x$digits, showfit=FALSE, signif.stars=getOption("show.signif.stars"),
signif.legend=signif.stars, ...)
## S3 method for class 'rma':
summary(object, digits=object$digits, showfit=TRUE, \dots)
## S3 method for class 'summary.rma':
print(x, digits=x$digits, showfit=TRUE, signif.stars=getOption("show.signif.stars"),
signif.legend=signif.stars, ...)"rma.uni", "rma.mh", "rma.peto", "rma.glmm", or "summary.rma" (for print)."rma" (for summary).FALSE for print and TRUE for summary).show.signif.stars slot of options.signif.stars.print functions do not return an object. The summary function returns the object passed to it (with additional class "summary.rma").showfit=TRUEor by default forsummary)."rma.uni"and mixed-effects models (i.e., for models including moderators). This is suppressed (and set toNULL) for models without moderators, fixed-effects models, or if the model does not contain an intercept.NAif the amount of heterogeneity is equal to zero to begin with."rma.glmm"and when using a model that models study level differences as a random effect)."rma.glmm", the results from a Wald-type test and a likelihood ratio test are provided (seerma.glmmfor more details)."rma.mh").rma.uni, rma.mh, rma.peto, rma.glmm