"rma.uni"
, "rma.mh"
, "rma.peto"
, and "rma.glmm"
.## S3 method for class 'rma.uni':
print(x, digits=x$digits, showfit=FALSE, signif.stars=getOption("show.signif.stars"),
signif.legend=signif.stars, ...)
## S3 method for class 'rma.mh':
print(x, digits=x$digits, showfit=FALSE, \dots)
## S3 method for class 'rma.peto':
print(x, digits=x$digits, showfit=FALSE, \dots)
## S3 method for class 'rma.glmm':
print(x, digits=x$digits, showfit=FALSE, signif.stars=getOption("show.signif.stars"),
signif.legend=signif.stars, ...)
## S3 method for class 'rma':
summary(object, digits=object$digits, showfit=TRUE, \dots)
## S3 method for class 'summary.rma':
print(x, digits=x$digits, showfit=TRUE, signif.stars=getOption("show.signif.stars"),
signif.legend=signif.stars, ...)
"rma.uni"
, "rma.mh"
, "rma.peto"
, "rma.glmm"
, or "summary.rma"
(for print
)."rma"
(for summary
).FALSE
for print
and TRUE
for summary
).show.signif.stars
slot of options
.signif.stars
.print
functions do not return an object. The summary
function returns the object passed to it (with additional class "summary.rma"
).showfit=TRUE
or by default forsummary
)."rma.uni"
and mixed-effects models (i.e., for models including moderators). This is suppressed (and set toNULL
) for models without moderators, fixed-effects models, or if the model does not contain an intercept.NA
if the amount of heterogeneity is equal to zero to begin with."rma.glmm"
and when using a model that models study level differences as a random effect)."rma.glmm"
, the results from a Wald-type test and a likelihood ratio test are provided (seerma.glmm
for more details)."rma.mh"
).rma.uni
, rma.mh
, rma.peto
, rma.glmm