probe2WayRC(fit, nameX, nameY, modVar, valProbe)
valProbe
argument. The second column is the simple intercept or simple slope. The third column is the standard error of the simple intercept or simple slope. The fourth column is the Wald (z) statistic. The fifth column is the p-value testing whether the simple intercepts or slopes are different from 0.
indProd
function. Note that the indicator products can be made for all possible combination or matched-pair approach (Marsh et al., 2004). Next, the hypothesized model with the regression with latent interaction will be used to fit all original indicators and the product terms. To use this function the model must be fit with a mean structure. See the example for how to fit the product term below. Once the lavaan result is obtained, this function will be used to probe the interaction. The probing process on residual-centered latent interaction is based on transforming the residual-centered result into the no-centered result. See Pornprasertmanit, Schoemann, Geldhof, and Little (submitted) for further details. Note that this approach based on a strong assumption that the first-order latent variables are normally distributed. The probing process is applied after the no-centered result (parameter estimates and their covariance matrix among parameter estimates) has been computed. See the probe2WayMC
for further details.
Lance, C. E. (1988). Residual centering, exploratory and confirmatory moderator analysis, and decomposition of effects in path models containing interactions. Applied Psychological Measurement, 12, 163-175.
Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions. Structural Equation Modeling, 13, 497-519.
Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. Psychological Methods, 9, 275-300.
Pornprasertmanit, S., Schoemann, A. M., Geldhof, G. J., & Little, T. D. (submitted). Probing latent interaction estimated with a residual centering approach.
indProd
For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
probe2WayMC
For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
probe3WayMC
For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
probe3WayRC
For probing the two-way latent interaction when the results are obtained from residual-centering approach.
plotProbe
Plot the simple intercepts and slopes of the latent interaction.
library(lavaan)
dat2wayRC <- orthogonalize(dat2way, 1:3, 4:6)
model1 <- "
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f12 =~ x1.x4 + x2.x5 + x3.x6
f3 =~ x7 + x8 + x9
f3 ~ f1 + f2 + f12
f12 ~~0*f1
f12 ~~ 0*f2
x1 ~ 0*1
x4 ~ 0*1
x1.x4 ~ 0*1
x7 ~ 0*1
f1 ~ NA*1
f2 ~ NA*1
f12 ~ NA*1
f3 ~ NA*1
"
fitRC2way <- sem(model1, data=dat2wayRC, meanstructure=TRUE, std.lv=FALSE)
summary(fitRC2way)
result2wayRC <- probe2WayRC(fitRC2way, c("f1", "f2", "f12"), "f3", "f2", c(-1, 0, 1))
result2wayRC
Run the code above in your browser using DataLab