powered by
Procrustes transform Y = pXR (after centering), where p is a scaling coefficient and R is a rotation matrix that minimize ||Y - pXR||_F.
procrustes(Y, X, n_iter_max = 1000, epsilon_min = 1e-07)
Reference matrix.
Matrix to transform (ncol(X) >= ncol(Y)).
ncol(X) >= ncol(Y)
Maximum number of iterations. Default is 1000.
1000
Convergence criterion. Default is 1e-7.
1e-7
Object of class "procrustes", a list with the following elements:
$R: the rotation matrix to apply to X,
$R
X
$rho: the scaling coefficient to apply to X,
$rho
$c: the column centering to apply to the resulting matrix,
$c
$diff: the average difference between Y and X transformed.
$diff
Y
You can use method predict() to apply this transformation to other data.
predict()
# NOT RUN { A <- matrix(rnorm(200), ncol = 20) B <- matrix(rnorm(length(A)), nrow = nrow(A)) proc <- procrustes(B, A) str(proc) plot(B, predict(proc, A)); abline(0, 1, col = "red") # }
Run the code above in your browser using DataLab