Given a point process model fitted to a point pattern dataset, and any choice of functional summary statistic, this function computes the pseudoscore test statistic of goodness-of-fit for the model.
psst(object, fun, r = NULL, breaks = NULL, ...,
model=NULL,
trend = ~1, interaction = Poisson(), rbord = reach(interaction),
truecoef=NULL, hi.res=NULL, funargs = list(correction="best"),
verbose=TRUE)
Object to be analysed.
Either a fitted point process model (object of class "ppm"
)
or a point pattern (object of class "ppp"
)
or quadrature scheme (object of class "quad"
).
Summary function to be applied to each point pattern.
Optional.
Vector of values of the argument
Optional alternative to r
for advanced use.
Ignored.
Optional. A fitted point process model (object of
class "ppm"
) to be re-fitted to the data
using update.ppm
, if object
is a point pattern.
Overrides the arguments trend,interaction,rbord
.
Optional. Numeric vector. If present, this will be treated as
if it were the true coefficient vector of the point process model,
in calculating the diagnostic. Incompatible with hi.res
.
Optional. List of parameters passed to quadscheme
.
If this argument is present, the model will be
re-fitted at high resolution as specified by these parameters.
The coefficients
of the resulting fitted model will be taken as the true coefficients.
Then the diagnostic will be computed for the default
quadrature scheme, but using the high resolution coefficients.
List of additional arguments to be passed to fun
.
Logical value determining whether to print progress reports during the computation.
A function value table (object of class "fv"
),
essentially a data frame of function values.
Columns in this data frame include dat
for the pseudosum,
com
for the compensator and res
for the
pseudoresidual.
There is a plot method for this class. See fv.object
.
Let
According to the Georgii-Nguyen-Zessin formula,
This algorithm computes
The diagnostic
Baddeley, A., Rubak, E. and Moller, J. (2011) Score, pseudo-score and residual diagnostics for spatial point process models. Statistical Science 26, 613--646.
# NOT RUN {
data(cells)
fit0 <- ppm(cells, ~1) # uniform Poisson
# }
# NOT RUN {
G0 <- psst(fit0, Gest)
G0
if(interactive()) plot(G0)
# }
Run the code above in your browser using DataLab