Learn R Programming

jmuOutlier (version 2.2)

ptriang: Triangular Cumulative Distribution Function

Description

Triangular cumulative distribution function with endpoints equal to min and max.

Usage

ptriang(q, min = 0, max = 1, lower.tail = TRUE)

Arguments

q

Vector of quantiles.

min

Left endpoint of the triangular distribution.

max

Right endpoint of the triangular distribution.

lower.tail

Logical; if TRUE (default), probabilities are \(P[X \le x]\); otherwise, \(P[X > x]\).

Value

ptriang gives the distribution function.

Details

The triangular distribution has density \(4 (x-a) / (b-a)^2\) for \(a \le x \le \mu\), and \(4 (b-x) / (b-a)^2\) for \(\mu < x \le b\), where \(a\) and \(b\) are the endpoints, and the mean of the distribution is \(\mu = (a+b) / 2\).

See Also

dtriang, qtriang, and rtriang.

Examples

Run this code
# NOT RUN {
ptriang( seq( 100, 200, length.out=11 ), 100, 200 )

ptriang( seq( 100, 200, length.out=11 ), 100, 200, FALSE ) 
# }

Run the code above in your browser using DataLab