# Next 4 lines commented out to save time in package checks, and saved version used
# if (require(affydata)) {
# data(Dilution)
# eset_mmgmos <- mmgmos(Dilution)
# }
data(eset_mmgmos)
# Next line shows that eset_mmgmos has 4 arrays, each of which is a different
# condition (the experimental design is a 2x2 factorial, with both liver and
# scanner factors)
pData(eset_mmgmos)
# Next line shows expression levels of first 3 probe sets
exprs(eset_mmgmos)[1:3,]
# Next line used so eset_mmgmos only has information about the liver factor
# The scanner factor will thus be ignored, and the two arrays of each level
# of the liver factor will be treated as replicates
pData(eset_mmgmos) <- pData(eset_mmgmos)[,1,drop=FALSE]
# To save time we'll just use 100 probe sets for the example
eset_mmgmos_100 <- eset_mmgmos[1:100,]
eset_comb <- pumaComb(eset_mmgmos_100)
eset_combimproved <- pumaCombImproved(eset_mmgmos_100)
pumaDEResults <- pumaDE(eset_comb)
pumaDEResults_improved <- pumaDE(eset_combimproved)
topGeneIDs(pumaDEResults,6) # Gives probeset identifiers
topGeneIDs(pumaDEResults_improved,6)
topGenes(pumaDEResults,6) # Gives row numbers
topGenes(pumaDEResults_improved,6)
statistic(pumaDEResults)[topGenes(pumaDEResults,6),] # PPLR scores of top six genes
statistic(pumaDEResults_improved)[topGenes(pumaDEResults_improved,6),]
FC(pumaDEResults)[topGenes(pumaDEResults,6),] # Fold-change of top six genes
FC(pumaDEResults_improved)[topGenes(pumaDEResults_improved,6),]
Run the code above in your browser using DataLab