# NOT RUN {
###############################
######### mLambertW ###########
mLambertW(theta = list(beta = c(0, 1), gamma = 0.1))
mLambertW(theta = list(beta = c(1, 1), gamma = 0.1)) # mean shifted by 1
mLambertW(theta = list(beta = c(0, 1), gamma = 0)) # N(0, 1)
###############################
######### rLambertW ###########
set.seed(1)
# same as rnorm(1000)
x <- rLambertW(n=100, theta = list(beta=c(0, 1)), distname = "normal")
skewness(x) # very small skewness
medcouple_estimator(x) # also close to zero
y <- rLambertW(n=100, theta = list(beta = c(1, 3), gamma = 0.1),
distname = "normal")
skewness(y) # high positive skewness (in theory equal to 3.70)
medcouple_estimator(y) # also the robust measure gives a high value
op <- par(no.readonly=TRUE)
par(mfrow = c(2, 2), mar = c(2, 4, 3, 1))
plot(x)
hist(x, prob=TRUE, 15)
lines(density(x))
plot(y)
hist(y, prob=TRUE, 15)
lines(density(y))
par(op)
###############################
######### dLambertW ###########
beta.s <- c(0, 1)
gamma.s <- 0.1
# x11(width=10, height=5)
par(mfrow = c(1, 2), mar = c(3, 3, 3, 1))
curve(dLambertW(x, theta = list(beta = beta.s, gamma = gamma.s),
distname = "normal"),
-3.5, 5, ylab = "", main="Density function")
plot(dnorm, -3.5, 5, add = TRUE, lty = 2)
legend("topright" , c("Lambert W x Gaussian" , "Gaussian"), lty = 1:2)
abline(h=0)
###############################
######### pLambertW ###########
curve(pLambertW(x, theta = list(beta = beta.s, gamma = gamma.s),
distname = "normal"),
-3.5, 3.5, ylab = "", main = "Distribution function")
plot(pnorm, -3.5,3.5, add = TRUE, lty = 2)
legend("topleft" , c("Lambert W x Gaussian" , "Gaussian"), lty = 1:2)
par(op)
######## Animation
# }
# NOT RUN {
gamma.v <- seq(-0.15, 0.15, length = 31) # typical, empirical range of gamma
b <- get_support(gamma_01(min(gamma.v)))[2]*1.1
a <- get_support(gamma_01(max(gamma.v)))[1]*1.1
for (ii in seq_along(gamma.v)) {
curve(dLambertW(x, beta = gamma_01(gamma.v[ii])[c("mu_x", "sigma_x")],
gamma = gamma.v[ii], distname="normal"),
a, b, ylab="", lty = 2, col = 2, lwd = 2, main = "pdf",
ylim = c(0, 0.45))
plot(dnorm, a, b, add = TRUE, lty = 1, lwd = 2)
legend("topright" , c("Lambert W x Gaussian" , "Gaussian"),
lty = 2:1, lwd = 2, col = 2:1)
abline(h=0)
legend("topleft", cex = 1.3,
c(as.expression(bquote(gamma == .(round(gamma.v[ii],3))))))
Sys.sleep(0.04)
}
# }
# NOT RUN {
###############################
######### qLambertW ###########
p.v <- c(0.01, 0.05, 0.5, 0.9, 0.95,0.99)
qnorm(p.v)
# same as above except for rounding errors
qLambertW(p.v, theta = list(beta = c(0, 1), gamma = 0), distname = "normal")
# positively skewed data -> quantiles are higher
qLambertW(p.v, theta = list(beta = c(0, 1), gamma = 0.1),
distname = "normal")
###############################
######### qqLambertW ##########
# }
# NOT RUN {
y <- rLambertW(n=500, distname="normal",
theta = list(beta = c(0,1), gamma = 0.1))
layout(matrix(1:2, ncol = 2))
qqnorm(y)
qqline(y)
qqLambertW(y, theta = list(beta = c(0, 1), gamma = 0.1),
distname = "normal")
# }
Run the code above in your browser using DataLab