# Load and process data set
data(bmiData)
# define response y to be the negative 12 month
# change in BMI from baseline
bmiData$y <- -100*(bmiData[,6] - bmiData[,4])/bmiData[,4]
# Second-stage regression
# Create modeling object for main effect component
moMain <- buildModelObj(model = ~ gender + parentBMI + month4BMI,
solver.method='lm')
# Create modeling object for contrast component
moCont <- buildModelObj(model = ~ parentBMI + month4BMI,
solver.method='lm')
fitQ2 <- qLearn(moMain = moMain,
moCont = moCont,
data = bmiData,
response = bmiData$y,
txName = "A2",
iter = 0L)
##Available methods
# Coefficients of the propensity score regression
coef(fitQ2)
# Description of method used to obtain object
DTRstep(fitQ2)
# Estimated value of the optimal treatment regime for training set
estimator(fitQ2)
# Value object returned by propensity score regression method
fitObject(fitQ2)
# Estimated optimal treatment for training data
optTx(fitQ2)
# Estimated optimal treatment for new data
optTx(fitQ2, bmiData)
# Value object returned by outcome regression method
outcome(fitQ2)
# Plots if defined by propensity regression method
dev.new()
par(mfrow = c(2,4))
plot(fitQ2)
plot(fitQ2, suppress = TRUE)
# Show main results of method
show(fitQ2)
# Show summary results of method
summary(fitQ2)
# First-stage regression
# Create modeling object for main effect component
moMain <- buildModelObj(model = ~ gender + race + parentBMI + baselineBMI,
solver.method='lm')
# Create modeling object for contrast component
moCont <- buildModelObj(model = ~ gender + parentBMI,
solver.method='lm')
fitQ1 <- qLearn(moMain = moMain,
moCont = moCont,
response = fitQ2,
data = bmiData,
txName = "A1",
iter = 100L)
Run the code above in your browser using DataLab