qdm(psi, start, respfun = c("logistic", "guessing", "gumbel", "gompertz", "weibull", "cauchy", "shepardA", "shepardAneg", "shepardB", "shepardBneg", "shepardD", "shepardDneg", "shepardE", "shepardEneg", "shepardF", "shepardFneg"), bias = 0, estimfun = c("minchi2", "ols", "wls"), optimizer = c("optim", "nlm"), optimargs = list())
psi
.qdm
that consists of the following components:nlm
or
optim
).psi
object used to fit Quadrilateral Dissimilarity
Model.respfun
, different functions can be selected to describe the
relationship between discrimination probabilities and dissimilarity
measure. Implemented are the logistic function (logistic
),
the logistic function with guessing parameter (guessing
), several
other functions commonly used as psychometric functions (gumbel
,
gompertz
, weibull
, cauchy
), and five functions
suggested by Shepard (1987) (shepardA
, shepardB
,
shepardD
, shepardE
, shepardF
) and their negatives
(shepardAneg
, shepardBneg
, shepardDneg
shepardEneg
, shepardFneg
). Default is the logistic
function. Note that for some of these functions the results critically
depend on the choice of the starting values. Parameters can be estimated by using different minimizing functions
available via the estimfun
argument: ordinary least squares
(ols
), weighted least squares (wls
), and minimization of
Pearson's $X^2$ (minchi2
). Default is the minimization of
$X^2$.
Shepard, R. N. (1987). Towards a universal law of generalization for psychological science. Science, 237, 1317--1323.
psi
, predict.qdm
, persp.qdm
,
nlm
, optim
.
## prepare data
data(FMrate)
psi1 <- psi(FMrate[FMrate$id == "subj1",])
## estimate model
p.s <- c(.2, .5, .1, .5, .3, .1, .1, .1)
q1 <- qdm(psi1, start=p.s)
print(q1)
## model predictions
predict(q1)
persp(q1)
Run the code above in your browser using DataLab