Last chance! 50% off unlimited learning
Sale ends in
Functions for 1-dimensional kernel density estimates.
dkde(x, fhat)
pkde(q, fhat)
qkde(p, fhat)
rkde(n, fhat, positive=FALSE)
vector of quantiles
vector of probabilities
number of observations
flag to compute KDE on the positive real line. Default is FALSE.
kernel density estimate, object of class kde
For the kernel density estimate fhat
,
pkde
computes the cumulative probability for the quantile
q
, qkde
computes the quantile corresponding to the probability
p
, dkde
computes the density value at
x
and rkde
computes a random sample of size n
.
pkde
uses Simpson's rule for the numerical
integration. rkde
uses
Silverman (1986)'s method to generate a random sample from a KDE.
Silverman, B. (1986) Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC. London.
# NOT RUN {
x <- rnorm.mixt(n=10000, mus=0, sigmas=1, props=1)
fhat <- kde(x=x, binned=TRUE)
p1 <- pkde(fhat=fhat, q=c(-1, 0, 0.5))
qkde(fhat=fhat, p=p1)
y <- rkde(fhat=fhat, n=100)
# }
Run the code above in your browser using DataLab