Last chance! 50% off unlimited learning
Sale ends in
qkernmatrix
calculates the qkernel matrix
# S4 method for qkernel
qkernmatrix(qkernel, x, y = NULL)
the kernel function to be used to calculate the qkernel
matrix.
This has to be a function of class qkernel
, i.e. which can be
generated either one of the build in
kernel generating functions (e.g., rbfbase
etc.) or a user defined
function of class qkernel
taking two vector arguments and returning a scalar.
a data matrix to be used to calculate the kernel matrix
second data matrix to calculate the kernel matrix
qkernmatrix
returns a conditionally negative definite matrix with a zero diagonal element.
Common functions used during kernel based computations.
The qkernel
parameter can be set to any function, of class
qkernel, which computes the kernel function value in feature space between two
vector arguments. qkerntool provides more than 10 qkernel functions
which can be initialized by using the following
functions:
nonlbase
Non Linear qkernel function
rbfbase
Gaussian qkernel function
laplbase
Laplacian qkernel function
ratibase
Rational Quadratic qkernel function
multbase
Multiquadric qkernel function
invbase
Inverse Multiquadric qkernel function
wavbase
Wave qkernel function
powbase
d qkernel function
logbase
Log qkernel function
caubase
Cauchy qkernel function
chibase
Chi-Square qkernel function
studbase
Generalized T-Student qkernel function
(see example.)
nonlcnd
, rbfcnd
,polycnd
,laplcnd
,
anocnd
, raticnd
, multcnd
, invcnd
,
wavcnd
, powcnd
, logcnd
, caucnd
,
chicnd
, studcnd
# NOT RUN {
data(iris)
dt <- as.matrix(iris[ ,-5])
## initialize kernel function
rbf <- rbfbase(sigma = 1.4, q=0.8)
rbf
## calculate qkernel matrix
qkernmatrix(rbf, dt)
# }
Run the code above in your browser using DataLab