# (1) basic fit of a normal distribution
#
x1<-c(6.4,13.3,4.1,1.3,14.1,10.6,9.9,9.6,15.3,22.1,13.4,
13.2,8.4,6.3,8.9,5.2,10.9,14.4)
qmedist(x1, "norm", probs=c(1/3, 2/3))
# (2) defining your own distribution functions, here for the Gumbel
# distribution for other distributions, see the CRAN task view dedicated
# to probability distributions
dgumbel <- function(x, a, b) 1/b*exp((a-x)/b)*exp(-exp((a-x)/b))
qgumbel <- function(p, a, b) a - b*log(-log(p))
qmedist(x1, "gumbel", probs=c(1/3, 2/3), start=list(a=10,b=5))
# (3) fit a discrete distribution (Poisson)
#
x2<-c(rep(4,1),rep(2,3),rep(1,7),rep(0,12))
qmedist(x2, "pois", probs=1/2)
qmedist(x2, "nbinom", probs=c(1/3, 2/3))
# (4) fit a finite-support distribution (beta)
#
x3<-c(0.80,0.72,0.88,0.84,0.38,0.64,0.69,0.48,0.73,0.58,0.81,
0.83,0.71,0.75,0.59)
qmedist(x3, "beta", probs=c(1/3, 2/3))
# (5) fit frequency distributions on USArrests dataset.
#
x4 <- USArrests$Assault
qmedist(x4, "pois", probs=1/2)
qmedist(x4, "nbinom", probs=c(1/3, 2/3))
Run the code above in your browser using DataLab