# NOT RUN {
# (1) Fit of a normal distribution on acute toxicity log-transformed values of
# endosulfan for nonarthropod invertebrates, using maximum likelihood estimation
# to estimate what is called a species sensitivity distribution
# (SSD) in ecotoxicology, followed by estimation of the 5, 10 and 20 percent quantile
# values of the fitted distribution, which are called the 5, 10, 20 percent hazardous
# concentrations (HC5, HC10, HC20) in ecotoxicology, followed with calculations of their
# confidence intervals with various definitions, from a small number of bootstrap
# iterations to satisfy CRAN running times constraint.
# For practical applications, we recommend to use at least niter=501 or niter=1001.
#
data(endosulfan)
ATV <- subset(endosulfan, group == "NonArthroInvert")$ATV
log10ATV <- log10(subset(endosulfan, group == "NonArthroInvert")$ATV)
fln <- fitdist(log10ATV, "norm")
quantile(fln, probs = c(0.05, 0.1, 0.2))
bln <- bootdist(fln, bootmethod="param", niter=101)
quantile(bln, probs = c(0.05, 0.1, 0.2))
quantile(bln, probs = c(0.05, 0.1, 0.2), CI.type = "greater")
quantile(bln, probs = c(0.05, 0.1, 0.2), CI.level = 0.9)
# (2) Draw of 95 percent confidence intervals on quantiles of the
# previously fitted distribution
#
cdfcomp(fln)
q1 <- quantile(bln, probs = seq(0,1,length=101))
points(q1$quantCI[1,],q1$probs,type="l")
points(q1$quantCI[2,],q1$probs,type="l")
# (2b) Draw of 95 percent confidence intervals on quantiles of the
# previously fitted distribution
# using the NEW function CIcdfplot
#
CIcdfplot(bln, CI.output = "quantile", CI.fill = "pink")
# (3) Fit of a distribution on acute salinity log-transformed tolerance
# for riverine macro-invertebrates, using maximum likelihood estimation
# to estimate what is called a species sensitivity distribution
# (SSD) in ecotoxicology, followed by estimation of the 5, 10 and 20 percent quantile
# values of the fitted distribution, which are called the 5, 10, 20 percent hazardous
# concentrations (HC5, HC10, HC20) in ecotoxicology, followed with calculations of
# their confidence intervals with various definitions.
# from a small number of bootstrap iterations to satisfy CRAN running times constraint.
# For practical applications, we recommend to use at least niter=501 or niter=1001.
#
data(salinity)
log10LC50 <-log10(salinity)
flncens <- fitdistcens(log10LC50,"norm")
quantile(flncens, probs = c(0.05, 0.1, 0.2))
blncens <- bootdistcens(flncens, niter = 101)
quantile(blncens, probs = c(0.05, 0.1, 0.2))
quantile(blncens, probs = c(0.05, 0.1, 0.2), CI.type = "greater")
quantile(blncens, probs = c(0.05, 0.1, 0.2), CI.level = 0.9)
# }
Run the code above in your browser using DataLab