qvalue(p, fdr.level = NULL, pfdr = FALSE, ...)
pi0.lambda
.pi0est
is called internally and calculates the estimate of $\pi_0$,
the proportion of true null hypotheses. The function lfdr
is also called internally and
calculates the estimated local FDR values. Arguments for these functions can be included via ...
and
will be utilized in the internal calls made in qvalue
. See Storey JD. (2003) The positive false discovery rate: A Bayesian
interpretation and the q-value. Annals of Statistics, 31: 2013-2035.
Storey JD, Taylor JE, and Siegmund D. (2004) Strong control,
conservative point estimation, and simultaneous conservative
consistency of false discovery rates: A unified approach. Journal of
the Royal Statistical Society, Series B, 66: 187-205.
Storey JD. (2011) False discovery rates. In International Encyclopedia of Statistical Science.
pi0est
, lfdr
, summary.qvalue
,
plot.qvalue
, hist.qvalue
, write.qvalue
# import data
data(hedenfalk)
p <- hedenfalk$p
# get q-value object
qobj <- qvalue(p)
plot(qobj)
hist(qobj)
# options available
qobj <- qvalue(p, lambda=0.5, pfdr=TRUE)
qobj <- qvalue(p, fdr.level=0.05, pi0.method="bootstrap", adj=1.2)
Run the code above in your browser using DataLab