"ranking"(x, y, kernel ="rbfdot", kpar = list(sigma = 1), scale = FALSE, alpha = 0.99, iterations = 600, edgegraph = FALSE, convergence = FALSE ,...)
"ranking"(x, y, alpha = 0.99, iterations = 600, convergence = FALSE,...)
"ranking"(x, y, kernel = "stringdot", kpar = list(length = 4, lambda = 0.5), alpha = 0.99, iterations = 600, convergence = FALSE, ...)rbfdot Radial Basis kernel function "Gaussian"
polydot Polynomial kernel function
vanilladot Linear kernel function
tanhdot Hyperbolic tangent kernel function
laplacedot Laplacian kernel function
besseldot Bessel kernel function
anovadot ANOVA RBF kernel function
splinedot Spline kernel
The kernel parameter can also be set to a user defined function of class kernel by passing the function name as an argument.
sigma inverse kernel width for the Radial Basis
kernel function "rbfdot" and the Laplacian kernel "laplacedot".
degree, scale, offset for the Polynomial kernel "polydot"
scale, offset for the Hyperbolic tangent kernel
function "tanhdot"
sigma, order, degree for the Bessel kernel "besseldot".
sigma, degree for the ANOVA kernel "anovadot".
Hyper-parameters for user defined kernels can be passed through the kpar parameter as well.
alpha parameter takes values between 0 and 1
and is used to control the authoritative scores received from the
unlabeled points. For 0 no global structure is found the algorithm
ranks the points similarly to the original distance metric.ranking which extends the matrix
class.
The first column of the returned matrix contains the original index of
the points in the data matrix the second column contains the final
score received by each point and the third column the ranking of the point.
The object contains the following slots :
ranking-class, specc data(spirals)
## create data from spirals
ran <- spirals[rowSums(abs(spirals) < 0.55) == 2,]
## rank points according to similarity to the most upper left point
ranked <- ranking(ran, 54, kernel = "rbfdot",
kpar = list(sigma = 100), edgegraph = TRUE)
ranked[54, 2] <- max(ranked[-54, 2])
c<-1:86
op <- par(mfrow = c(1, 2),pty="s")
plot(ran)
plot(ran, cex=c[ranked[,3]]/40)
Run the code above in your browser using DataLab