# Here the application in the paper of Quintero et al.,
# on the Psophia trumpeters
# is shown using rase package.
#load data
data(rase_data, package = 'rase')
## Not run:
# # check the data we are going to use
# # the phylogenetic tree
# psophia_tree
#
# # the GPC polygons of Psophia distribution.
# psophia_poly
#
# # Species names of polygons (in order)
# pnames <- c('dextralis', 'viridis', 'leucoptera', 'interjecta',
# 'obscura', 'crepitans', 'ochroptera', 'napensis')
#
# # name the polygons
# psophia_poly <- name.poly(psophia_poly, psophia_tree,
# poly.names = pnames)
#
# # Run rase for 10 iterations
# rase_results <- rase(psophia_tree, psophia_poly, niter = 100)
# # Run with higher number of iterations
# # rase_results <- rase(psophia_tree, polygons)
#
# # Check the results
# str(rase_results)
#
# # post-MCMC handling
# rase_results_for_ggmcmc <- post.mcmc(rase_results, burnin=0, thin = 1)
#
# #plot the densities for dispersal rates using ggmcmc
# require(ggmcmc)
# ggs_traceplot(rase_results_for_ggmcmc, family = 'sigma')
# ## End(Not run)
Run the code above in your browser using DataLab