# NOT RUN {
### Constrained optimization with rational objective ###
### function and linear and quadratic constraints ###
### Example from animal breeding ###
### The mean kinship at native alleles in the offspring is minimized ###
### The mean breeding value and the mean kinship are constrained ###
data(phenotype)
data(myQ)
data(myQ1)
data(myQ2)
A <- t(model.matrix(~Sex+BV+MC-1, data=phenotype))
A[,1:5]
val <- c(0.5, 0.5, 0.4, 0.5 )
dir <- c("==", "==", ">=", "<=")
mycop <- cop(f = quadfun(Q=myQ, d=0.001, name="Kinship", id=rownames(myQ)),
lb = lbcon(0, id=phenotype$Indiv),
ub = ubcon(NA, id=phenotype$Indiv),
lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv),
rc = ratiocon(Q1=myQ1, Q2=myQ2, d1=0.0004, d2=0.00025, val=0.040,
id=rownames(myQ1), name="nativeKinship")
)
res <- solvecop(mycop, solver="slsqp", quiet=FALSE)
validate(mycop, res)
# valid solver status
# TRUE slsqp successful completion
#
# Variable Value Bound OK?
# --------------------------------------
# Kinship 0.0324 min :
# --------------------------------------
# lower bounds all x >= lb : TRUE
# Sexfemale 0.5 == 0.5 : TRUE
# Sexmale 0.5 == 0.5 : TRUE
# BV 0.4 >= 0.4 : TRUE
# MC 0.4668 <= 0.5 : TRUE
# nativeKinship 0.04 <= 0.04 : TRUE
# --------------------------------------
# }
Run the code above in your browser using DataLab