
dbilogis4(x1, x2, loc1 = 0, scale1 = 1, loc2 = 0, scale2 = 1, log = FALSE)
pbilogis4(q1, q2, loc1 = 0, scale1 = 1, loc2 = 0, scale2 = 1)
rbilogis4(n, loc1 = 0, scale1 = 1, loc2 = 0, scale2 = 1)
rlogis
.log = TRUE
then the logarithm of the density is returned.dbilogis4
gives the density,
pbilogis4
gives the distribution function, and
rbilogis4
generates random deviates (a two-column matrix).bilogis4
, the bilogistic4
.par(mfrow = c(1, 3))
ymat <- rbilogis4(n = 2000, loc1 = 5, loc2 = 7, scale2 = exp(1))
myxlim <- c(-2, 15); myylim <- c(-10, 30)
plot(ymat, xlim = myxlim, ylim = myylim)
N <- 100
x1 <- seq(myxlim[1], myxlim[2], len = N)
x2 <- seq(myylim[1], myylim[2], len = N)
ox <- expand.grid(x1, x2)
z <- dbilogis4(ox[,1], ox[,2], loc1 = 5, loc2 = 7, scale2 = exp(1))
contour(x1, x2, matrix(z, N, N), main = "density")
z <- pbilogis4(ox[,1], ox[,2], loc1 = 5, loc2 = 7, scale2 = exp(1))
contour(x1, x2, matrix(z, N, N), main = "cdf")
Run the code above in your browser using DataLab