Learn R Programming

bnlearn (version 4.1)

rbn: Simulate random data from a given Bayesian network

Description

Simulate random data from a given Bayesian network.

Usage

# S3 method for bn
rbn(x, n = 1, data, fit = "mle", …, debug = FALSE)
# S3 method for bn.fit
rbn(x, n = 1, …, debug = FALSE)

Arguments

x
an object of class bn or bn.fit.
n
a positive integer giving the number of observations to generate.
data
a data frame containing the data the Bayesian network was learned from.
fit
a character string, the label of the method used to fit the parameters of the newtork. See bn.fit for details.
...
additional arguments for the parameter estimation prcoedure, see again bn.fit for details..
debug
a boolean value. If TRUE a lot of debugging output is printed; otherwise the function is completely silent.

Value

A data frame with the same structure (column names and data types) of the data argument (if x is an object of class bn) or with the same structure as the data originally used to to fit the parameters of the Bayesian network (if x is an object of class bn.fit).

References

Korb K, Nicholson AE (2010). Bayesian Artificial Intelligence. Chapman & Hall/CRC, 2nd edition.

See Also

bn.boot, bn.cv.

Examples

Run this code
## Not run: ------------------------------------
# data(learning.test)
# res = gs(learning.test)
# res = set.arc(res, "A", "B")
# par(mfrow = c(1,2))
# plot(res)
# sim = rbn(res, 500, learning.test)
# plot(gs(sim))
## ---------------------------------------------

Run the code above in your browser using DataLab