# NOT RUN {
# Example 1: Undergraduate enrolments at Auckland University in 1990
fitted(grc1 <- grc(auuc))
summary(grc1)
grc2 <- grc(auuc, Rank = 2, Index.corner = c(2, 5))
fitted(grc2)
summary(grc2)
model3 <- rcim(auuc, Rank = 1, fam = multinomial,
M = ncol(auuc)-1, cindex = 2:(ncol(auuc)-1), trace = TRUE)
fitted(model3)
summary(model3)
# Median polish but not 100 percent reliable. Maybe call alaplace2()...
# }
# NOT RUN {
rcim0 <- rcim(auuc, fam = alaplace1(tau = 0.5), trace = FALSE, maxit = 500)
round(fitted(rcim0), digits = 0)
round(100 * (fitted(rcim0) - auuc) / auuc, digits = 0) # Discrepancy
depvar(rcim0)
round(coef(rcim0, matrix = TRUE), digits = 2)
Coef(rcim0, matrix = TRUE)
# constraints(rcim0)
names(constraints(rcim0))
# Compare with medpolish():
(med.a <- medpolish(auuc))
fv <- med.a$overall + outer(med.a$row, med.a$col, "+")
round(100 * (fitted(rcim0) - fv) / fv) # Hopefully should be all 0s
# }
# NOT RUN {
# Example 2: 2012 Summer Olympic Games in London
# }
# NOT RUN {
top10 <- head(olym12, 10)
grc1.oly12 <- with(top10, grc(cbind(gold, silver, bronze)))
round(fitted(grc1.oly12))
round(resid(grc1.oly12, type = "response"), digits = 1) # Response residuals
summary(grc1.oly12)
Coef(grc1.oly12)
# }
# NOT RUN {
# Example 3: Unconstrained quadratic ordination (UQO); see Yee and Hadi (2014)
# }
# NOT RUN {
n <- 100; p <- 5; S <- 10
pdata <- rcqo(n, p, S, es.opt = FALSE, eq.max = FALSE,
eq.tol = TRUE, sd.latvar = 0.75) # Poisson counts
true.nu <- attr(pdata, "latvar") # The 'truth'; site scores
attr(pdata, "tolerances") # The 'truth'; tolerances
Y <- Select(pdata, "y", sort = FALSE) # Y matrix (n x S); the "y" vars
uqo.rcim1 <- rcim(Y, Rank = 1,
str0 = NULL, # Delta covers entire n x M matrix
iindex = 1:nrow(Y), # RRR covers the entire Y
has.intercept = FALSE) # Suppress the intercept
# Plot 1
par(mfrow = c(2, 2))
plot(attr(pdata, "optimums"), Coef(uqo.rcim1)@A,
col = "blue", type = "p", main = "(a) UQO optimums",
xlab = "True optimums", ylab = "Estimated (UQO) optimums")
mylm <- lm(Coef(uqo.rcim1)@A ~ attr(pdata, "optimums"))
abline(coef = coef(mylm), col = "orange", lty = "dashed")
# Plot 2
fill.val <- NULL # Choose this for the new parameterization
plot(attr(pdata, "latvar"), c(fill.val, concoef(uqo.rcim1)),
las = 1, col = "blue", type = "p", main = "(b) UQO site scores",
xlab = "True site scores", ylab = "Estimated (UQO) site scores" )
mylm <- lm(c(fill.val, concoef(uqo.rcim1)) ~ attr(pdata, "latvar"))
abline(coef = coef(mylm), col = "orange", lty = "dashed")
# Plots 3 and 4
myform <- attr(pdata, "formula")
p1ut <- cqo(myform, family = poissonff,
eq.tol = FALSE, trace = FALSE, data = pdata)
c1ut <- cqo(Select(pdata, "y", sort = FALSE) ~ scale(latvar(uqo.rcim1)),
family = poissonff, eq.tol = FALSE, trace = FALSE, data = pdata)
lvplot(p1ut, lcol = 1:S, y = TRUE, pcol = 1:S, pch = 1:S, pcex = 0.5,
main = "(c) CQO fitted to the original data",
xlab = "Estimated (CQO) site scores")
lvplot(c1ut, lcol = 1:S, y = TRUE, pcol = 1:S, pch = 1:S, pcex = 0.5,
main = "(d) CQO fitted to the scaled UQO site scores",
xlab = "Estimated (UQO) site scores")
# }
Run the code above in your browser using DataLab