##simulate 1000 observations from 2-dimensional model w/default parameter values:
set.seed(123)
y <- mlgarchSim(1000)
##estimate a 2-dimensional ccc-log-garch(1,1):
mymod <- mlgarch(y)
##print results:
print(mymod)
##extract ccc-log-garch coefficients:
coef(mymod)
##extract Gaussian log-likelihood (zeros excluded) of the ccc-log-garch model:
logLik(mymod)
##extract Gaussian log-likelihood (zeros excluded) of the varma representation:
logLik(mymod, varma=TRUE)
##extract variance-covariance matrix:
vcov(mymod)
##extract and plot the fitted conditional standard deviations:
sdhat <- fitted(mymod)
plot(sdhat)
##extract and plot standardised residuals:
zhat <- residuals(mymod)
plot(zhat)
Run the code above in your browser using DataLab