# \donttest{
## Example 1: Generating data with normal innovations
set.seed(93899)
x = cbind(1, runif(300))
dat1 = rARCens(n=300, beta=c(1,-1), phi=c(.48,-.2), sig2=.5, x=x,
cens='left', pcens=.05, innov="norm")
# Fitting the model with normal innovations
mod1 = ARCensReg(dat1$data$cc, dat1$data$lcl, dat1$data$ucl, dat1$data$y,
x, p=2, tol=0.001)
mod1$tab
plot(residuals(mod1))
# Fitting the model with Student-t innovations
mod2 = ARtCensReg(dat1$data$cc, dat1$data$lcl, dat1$data$ucl, dat1$data$y,
x, p=2, tol=0.001)
mod2$tab
plot(residuals(mod2))
## Example 2: Generating heavy-tailed data
set.seed(12341)
x = cbind(1, runif(300))
dat2 = rARCens(n=300, beta=c(1,-1), phi=c(.48,-.2), sig2=.5, x=x,
cens='left', pcens=.05, innov="t", nu=3)
# Fitting the model with normal innovations
mod3 = ARCensReg(dat2$data$cc, dat2$data$lcl, dat2$data$ucl, dat2$data$y,
x, p=2, tol=0.001)
mod3$tab
plot(residuals(mod3))
# Fitting the model with Student-t innovations
mod4 = ARtCensReg(dat2$data$cc, dat2$data$lcl, dat2$data$ucl, dat2$data$y,
x, p=2, tol=0.001)
mod4$tab
plot(residuals(mod4))
# }
Run the code above in your browser using DataLab