Learn R Programming

caret (version 5.07-001)

rfe: Backwards Feature Selection

Description

A simple backwards selection, a.k.a. recursive feature selection (RFE), algorithm

Usage

rfe(x, ...)

## S3 method for class 'default': rfe(x, y, sizes = 2^(2:4), metric = ifelse(is.factor(y), "Accuracy", "RMSE"), maximize = ifelse(metric == "RMSE", FALSE, TRUE), rfeControl = rfeControl(), ...)

rfeIter(x, y, testX, testY, sizes, rfeControl = rfeControl(), ...)

## S3 method for class 'rfe': predict(object, newdata, ...)

Arguments

Value

  • A list with elements
  • finalVariablesa list of size length(sizes) + 1 containing the column names of the ``surviving'' predictors at each stage of selection. The first element corresponds to all the predictors (i.e. size = ncol(x))
  • preda data frame with columns for the test set outcome, the predicted outcome and the subset size.

Details

This function implements backwards selection of predictors based on predictor importance ranking. The predictors are ranked and the less important ones are sequentially eliminated prior to modeling. The goal is to find a subset of predictors that can be used to produce an accurate model. The package vignette for feature selection has detailed descriptions of the algorithms.

rfe can be used with "explicit parallelism", where different resamples (e.g. cross-validation group) can be split up and run on multiple machines or processors. By default, rfe will use a single processor on the host machine. As of version 4.99 of this package, the framework used for parallel processing uses the foreach package. To run the resamples in parallel, the code for rfe does not change; prior to the call to rfe, a parallel backend is registered with foreach (see the examples below).

rfeIter is the basic algorithm while rfe wraps these operations inside of resampling. To avoid selection bias, it is better to use the function rfe than rfeIter.

See Also

rfeControl

Examples

Run this code
data(BloodBrain)

x <- scale(bbbDescr[,-nearZeroVar(bbbDescr)])
x <- x[, -findCorrelation(cor(x), .8)]
x <- as.data.frame(x)

set.seed(1)
lmProfile <- rfe(x, logBBB,
                 sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
                 rfeControl = rfeControl(functions = lmFuncs, 
                                         number = 200))
set.seed(1)
lmProfile2 <- rfe(x, logBBB,
                 sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
                 rfeControl = rfeControl(functions = lmFuncs, 
                                         rerank = TRUE, 
                                         number = 200))

xyplot(lmProfile$results$RMSE + lmProfile2$results$RMSE  ~ 
       lmProfile$results$Variables, 
       type = c("g", "p", "l"), 
       auto.key = TRUE)

rfProfile <- rfe(x, logBBB,
                 sizes = c(2, 5, 10, 20),
                 rfeControl = rfeControl(functions = rfFuncs))

bagProfile <- rfe(x, logBBB,
                  sizes = c(2, 5, 10, 20),
                  rfeControl = rfeControl(functions = treebagFuncs))

set.seed(1)
svmProfile <- rfe(x, logBBB,
                  sizes = c(2, 5, 10, 20),
                  rfeControl = rfeControl(functions = caretFuncs, 
                                          number = 200),
                  ## pass options to train()
                  method = "svmRadial")

## classification with no resampling

data(mdrr)
mdrrDescr <- mdrrDescr[,-nearZeroVar(mdrrDescr)]
mdrrDescr <- mdrrDescr[, -findCorrelation(cor(mdrrDescr), .8)]

set.seed(1)
inTrain <- createDataPartition(mdrrClass, p = .75, list = FALSE)[,1]

train <- mdrrDescr[ inTrain, ]
test  <- mdrrDescr[-inTrain, ]
trainClass <- mdrrClass[ inTrain]
testClass  <- mdrrClass[-inTrain]

set.seed(2)
ldaProfile <- rfe(train, trainClass,
                  sizes = c(1:10, 15, 30),
                  rfeControl = rfeControl(functions = ldaFuncs, method = "cv"))
plot(ldaProfile, type = c("o", "g"))

postResample(predict(ldaProfile, test), testClass)

#######################################
## Parallel Processing Example via multicore

library(doMC)

## Note: if the underlying model also uses foreach, the
## number of cores specified above will double (along with
## the memory requirements)
registerDoMC(cores = 2)

set.seed(1)
lmProfile <- rfe(x, logBBB,
                 sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
                 rfeControl = rfeControl(functions = lmFuncs, 
                                         number = 200))

Run the code above in your browser using DataLab