Density, distribution function, quantile function and random
generation for the generalized Pareto distribution (GPD) with
location parameter location
,
scale parameter scale
and
shape parameter shape
.
dgpd(x, location = 0, scale = 1, shape = 0, log = FALSE,
tolshape0 = sqrt(.Machine$double.eps))
pgpd(q, location = 0, scale = 1, shape = 0,
lower.tail = TRUE, log.p = FALSE)
qgpd(p, location = 0, scale = 1, shape = 0,
lower.tail = TRUE, log.p = FALSE)
rgpd(n, location = 0, scale = 1, shape = 0)
vector of quantiles.
vector of probabilities.
number of observations.
If length(n) > 1
then the length is taken to be the number required.
the location parameter
the (positive) scale parameter
the shape parameter
Logical.
If log = TRUE
then the logarithm of the density is returned.
Positive numeric.
Threshold/tolerance value for resting whether
dgpd
gives the density,
pgpd
gives the distribution function,
qgpd
gives the quantile function, and
rgpd
generates random deviates.
See gpd
, the VGAM family function
for estimating the two parameters by maximum likelihood estimation,
for formulae and other details.
Apart from n
, all the above arguments may be vectors and
are recyled to the appropriate length if necessary.
Coles, S. (2001) An Introduction to Statistical Modeling of Extreme Values. London: Springer-Verlag.
# NOT RUN {
loc <- 2; sigma <- 1; xi <- -0.4
x <- seq(loc - 0.2, loc + 3, by = 0.01)
plot(x, dgpd(x, loc, sigma, xi), type = "l", col = "blue", ylim = c(0, 1),
main = "Blue is density, red is cumulative distribution function",
sub = "Purple are 5,10,...,95 percentiles", ylab = "", las = 1)
abline(h = 0, col = "blue", lty = 2)
lines(qgpd(seq(0.05, 0.95, by = 0.05), loc, sigma, xi),
dgpd(qgpd(seq(0.05, 0.95, by = 0.05), loc, sigma, xi), loc, sigma, xi),
col = "purple", lty = 3, type = "h")
lines(x, pgpd(x, loc, sigma, xi), type = "l", col = "red")
abline(h = 0, lty = 2)
pgpd(qgpd(seq(0.05, 0.95, by = 0.05), loc, sigma, xi), loc, sigma, xi)
# }
Run the code above in your browser using DataLab