Learn R Programming

VGAM (version 0.8-1)

riceff: Rice Distribution Family Function

Description

Estimates the two parameters of a Rice distribution by maximum likelihood estimation.

Usage

riceff(lvee="loge", lsigma="loge", evee=list(), esigma=list(),
       ivee=NULL, isigma=NULL, nsimEIM=100, zero=NULL)

Arguments

lvee, evee
Link function and extra argument for the $v$ parameter. See Links for more choices and for general information.
lsigma, esigma
Link function and extra argument for the $\sigma$ parameter. See Links for more choices and for general information.
ivee, isigma
Optional initial values for the parameters. See CommonVGAMffArguments for more information. If convergence failure occurs (this VGAM family function seems to require good init
nsimEIM, zero
See CommonVGAMffArguments for more information.

Value

  • An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm and vgam.

Details

The Rician distribution has density function $$f(y;v,\sigma) = \frac{ y }{\sigma^2} \, \exp(-(y^2+v^2) / (2\sigma^2)) \, I_0(y v / \sigma^2)$$ where $y > 0$, $v > 0$, $\sigma > 0$ and $I_0$ is the modified Bessel function of the first kind with order zero. When $v = 0$ the Rice distribution reduces to a Rayleigh distribution. The mean is $\sigma \sqrt{\pi/2} \exp(z/2) ((1-z) I_0(-z/2)-z I_1(-z/2))$ (returned as the fitted values) where $z=-v^2/(2 \sigma^2)$. Simulated Fisher scoring is implemented.

References

Rice, S. O. (1945) Mathematical Analysis of Random Noise. Bell System Technical Journal, 24, 46--156.

See Also

drice, rayleigh, besselI.

Examples

Run this code
vee = exp(2); sigma = exp(1);
y = rrice(n <- 1000, vee, sigma)
fit = vglm(y ~ 1, riceff, trace=TRUE, crit="c")
c(mean(y), fitted(fit)[1])
coef(fit, matrix=TRUE)
Coef(fit)
summary(fit)

Run the code above in your browser using DataLab