# NOT RUN {
rkMethod() # returns the names of all available methods
rkMethod("rk45dp7") # parameters of the Dormand-Prince 5(4) method
rkMethod("ode45") # an alias for the same method
func <- function(t, x, parms) {
with(as.list(c(parms, x)),{
dP <- a * P - b * C * P
dC <- b * P * C - c * C
res <- c(dP, dC)
list(res)
})
}
times <- seq(0, 200, length = 101)
parms <- c(a = 0.1, b = 0.1, c = 0.1)
x <- c(P = 2, C = 1)
## rk using ode45 as the default method
out <- rk(x, times, func, parms)
## all methods can be called also from 'ode' by using rkMethod
out <- ode(x, times, func, parms, method = rkMethod("rk4"))
## 'ode' has aliases for the most common RK methods
out <- ode(x, times, func, parms, method = "ode45")
##===========================================================================
## Comparison of local error from different interpolation methods
##===========================================================================
## lsoda with lower tolerances (1e-10) used as reference
o0 <- ode(x, times, func, parms, method = "lsoda", atol = 1e-10, rtol = 1e-10)
## rk45dp7 with hmax = 10 > delta_t = 2
o1 <- ode(x, times, func, parms, method = rkMethod("rk45dp7"), hmax = 10)
## disable dense-output interpolation
## and use only Neville-Aitken polynomials instead
o2 <- ode(x, times, func, parms,
method = rkMethod("rk45dp7", densetype = NULL, nknots = 5), hmax = 10)
## stop and go: disable interpolation completely
## and integrate explicitly between external time steps
o3 <- ode(x, times, func, parms,
method = rkMethod("rk45dp7", densetype = NULL, nknots = 0, hmax=10))
## compare different interpolation methods with lsoda
mf <- par("mfrow" = c(4, 1))
matplot(o1[,1], o1[,-1], type = "l", xlab = "Time", main = "State Variables",
ylab = "P, C")
matplot(o0[,1], o0[,-1] - o1[,-1], type = "l", xlab = "Time", ylab = "Diff.",
main="Difference between lsoda and ode45 with dense output")
abline(h = 0, col = "grey")
matplot(o0[,1], o0[,-1] - o2[,-1], type = "l", xlab = "Time", ylab = "Diff.",
main="Difference between lsoda and ode45 with Neville-Aitken")
abline(h = 0, col = "grey")
matplot(o0[,1], o0[,-1] - o3[,-1], type = "l", xlab = "Time", ylab = "Diff.",
main="Difference between lsoda and ode45 in 'stop and go' mode")
abline(h = 0, col = "grey")
par(mf)
##===========================================================================
## rkMethod allows to define user-specified Runge-Kutta methods
##===========================================================================
out <- ode(x, times, func, parms,
method = rkMethod(ID = "midpoint",
varstep = FALSE,
A = c(0, 1/2),
b1 = c(0, 1),
c = c(0, 1/2),
stage = 2,
Qerr = 1
)
)
plot(out)
## compare method diagnostics
times <- seq(0, 200, length = 10)
o1 <- ode(x, times, func, parms, method = rkMethod("rk45ck"))
o2 <- ode(x, times, func, parms, method = rkMethod("rk78dp"))
diagnostics(o1)
diagnostics(o2)
# }
Run the code above in your browser using DataLab