## Run with self-created random matrix:
set.seed(777)
random.matrix <- create.rand.mat(size = 1000, distrib = "norm")$rand.matr
dim(random.matrix) # 1000 1000 should be big enough
## Not run:
# res <- rm.matrix.validation(random.matrix)
# res <- rm.matrix.validation(random.matrix, discard.outliers = FALSE)
# res <- rm.matrix.validation(random.matrix, unfold.method = "spline")
# res <- rm.matrix.validation(random.matrix, unfold.method = "spline", discard.outliers = FALSE)
# ## End(Not run)
## Not run:
# library(igraph)
#
# ## Create noisy matrix and validate:
# g <- erdos.renyi.game(1000, 0.1)
# adj = as.matrix(get.adjacency(g))
# rm.matrix.validation(adj) # Wigner-Dyson case, unstructured matrix, noise
#
# ## Create modular (block-diagonal) matrix and validate:
# matlist = list()
# for (i in 1:4) matlist[[i]] = get.adjacency(erdos.renyi.game(250, 0.1))
# mat <- bdiag(matlist) # block-diagonal matrix
# rm.matrix.validation(as.matrix(mat)) # Exponential case, modular matrix
#
# ## End(Not run)
Run the code above in your browser using DataLab