rotationForest: Binary classification with Rotation Forest (Rodriguez en Kuncheva, 2006)
Description
rotationForest implements an ensemble method where each base classifier (tree) is fit on the principal components of the variables of random partitions of the feature set.
Usage
rotationForest(x, y, K = round(ncol(x)/3, 0), L = 10, verbose = FALSE,
...)
Arguments
x
A data frame of predictors (numeric, or integer). Categorical variables need to be transformed to indicator (dummy) variables. At minimum x requires two columns.
y
A factor containing the response vector. Only {0,1} is allowed.
K
The number of variable subsets. The default is the value K that results in three features per subset.
L
The number of base classifiers (trees using the rpart package). The default is 10.
verbose
Boolean. Should information about the subsets be printed?
...
Arguments to rpart.control. First run library(rpart).
Value
An object of class rotationForest, which is a list with the following elements: