Last chance! 50% off unlimited learning
Sale ends in
Density, distribution function, quantile function and random generation for the positive-Poisson distribution.
dpospois(x, lambda, log = FALSE)
ppospois(q, lambda)
qpospois(p, lambda)
rpospois(n, lambda)
vector of quantiles.
vector of probabilities.
number of observations.
Fed into runif
.
vector of positive means (of an ordinary Poisson distribution). Short vectors are recycled.
logical.
dpospois
gives the density,
ppospois
gives the distribution function,
qpospois
gives the quantile function, and
rpospois
generates random deviates.
The positive-Poisson distribution is a Poisson distribution but with
the probability of a zero being zero. The other probabilities are scaled
to add to unity.
The mean therefore is
lambda
returns a NaN
.
# NOT RUN {
lambda <- 2; y = rpospois(n = 1000, lambda)
table(y)
mean(y) # Sample mean
lambda / (1 - exp(-lambda)) # Population mean
(ii <- dpospois(0:7, lambda))
cumsum(ii) - ppospois(0:7, lambda) # Should be 0s
table(rpospois(100, lambda))
table(qpospois(runif(1000), lambda))
round(dpospois(1:10, lambda) * 1000) # Should be similar
# }
# NOT RUN {
x <- 0:7
barplot(rbind(dpospois(x, lambda), dpois(x, lambda)),
beside = TRUE, col = c("blue", "orange"),
main = paste("Positive Poisson(", lambda, ") (blue) vs",
" Poisson(", lambda, ") (orange)", sep = ""),
names.arg = as.character(x), las = 1, lwd = 2)
# }
Run the code above in your browser using DataLab