data(car.all)
index = with(car.all, Country == "Germany" | Country == "USA" |
                      Country == "Japan" | Country == "Korea")
scar = car.all[index, ]  # standardized car data
fcols = c(13,14,18:20,22:26,29:31,33,34,36)  # These are factors
scar[,-fcols] = scale(scar[,-fcols]) # Standardize all numerical vars
ones = matrix(1, 3, 1)
cms = list("(Intercept)"=diag(3), Width=ones, Weight=ones,
           Disp.=diag(3), Tank=diag(3), Price=diag(3), 
           Frt.Leg.Room=diag(3))
set.seed(111)
fit = rrvglm(Country ~ Width + Weight + Disp. + Tank + Price + Frt.Leg.Room,
             multinomial, data =  scar, Rank = 2, trace = TRUE,
             constraints=cms, Norrr = ~ 1 + Width + Weight,
             Uncor=TRUE, Corner=FALSE, Bestof=2)
fit@misc$deviance  # A history of the fits
Coef(fit)
biplot(fit, chull=TRUE, scores=TRUE, clty=2, ccol="blue", scol="red",
       Ccol="darkgreen", Clwd=2, Ccex=2,
       main="1=Germany, 2=Japan, 3=Korea, 4=USA")Run the code above in your browser using DataLab