Learn R Programming

evd (version 2.3-6)

rweibull: The Reverse Weibull Distribution

Description

Density function, distribution function, quantile function and random generation for the reverse (or negative) Weibull distribution with location, scale and shape parameters.

Usage

drweibull(x, loc=0, scale=1, shape=1, log = FALSE) 
prweibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE) 
qrweibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rrweibull(n, loc=0, scale=1, shape=1)

dnweibull(x, loc=0, scale=1, shape=1, log = FALSE) pnweibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE) qnweibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE) rnweibull(n, loc=0, scale=1, shape=1)

Arguments

x, q

Vector of quantiles.

p

Vector of probabilities.

n

Number of observations.

loc, scale, shape

Location, scale and shape parameters (can be given as vectors).

log

Logical; if TRUE, the log density is returned.

lower.tail

Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Value

drweibull and dnweibull give the density function, prweibull and pnweibull give the distribution function, qrweibull and qnweibull give the quantile function, rrweibull and rnweibull generate random deviates.

Details

The reverse (or negative) Weibull distribution function with parameters \(\code{loc} = a\), \(\code{scale} = b\) and \(\code{shape} = s\) is $$G(z) = \exp\left\{-\left[-\left(\frac{z-a}{b}\right) \right]^s\right\}$$ for \(z < a\) and one otherwise, where \(b > 0\) and \(s > 0\).

See Also

rfrechet, rgev, rgumbel

Examples

Run this code
# NOT RUN {
drweibull(-5:-3, -1, 0.5, 0.8)
prweibull(-5:-3, -1, 0.5, 0.8)
qrweibull(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
rrweibull(6, -1, 0.5, 0.8)
p <- (1:9)/10
prweibull(qrweibull(p, -1, 2, 0.8), -1, 2, 0.8)
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
# }

Run the code above in your browser using DataLab