Learn R Programming

knnIndep (version 2.0)

run.tests: Run several tests of independence on a benchmark of different functional relationships

Description

This function runs a set of independence tests on a benchmark consisting of different functional dependence types (see generate.benchmark.data)

Usage

run.tests(fun, args, types, noises, size = 320, nsim = 500, ...)

Arguments

fun
function or character naming a function. A function should have two vectors of coordinates as first two arguments
args
list of additional arguments to the functions fun. If a function does not need any arguments use an empty list.
types
numeric, which type of dependence to benchmark (see generate.benchmark.data)
noises
matrix of noise to add to each dependence. It should have types number of columns
size
numeric, size of the data sets to generate (default 320 points)
nsim
numeric, how many replicate simulations to run under the null model and H1, default 500
...
additional arguments to pass on to function generate.benchmark.data

Value

This function returns a list data structure that can be further processed with the functions of this package, calculate.power,generate.roc

Details

This function makes use of mclapply so MC_CORES should be set to a number greater than 1 for parallelization

See Also

calculate.power,generate.roc, generate.benchmark.data

Examples

Run this code
noises = cbind(lin=c(.1,.5,.8),circ=c(.2,.4,.6))
mycor = function(...) cor(...)^2
results.cor=run.tests(mycor,args=list(),types=c(1,7),noises=noises,nsim=50,size=100)
results = run.tests("novelTest.extreme",args=list(maxi=10),types=c(1,7),noises=noises,nsim=25,
	size=100)
## Not run: 
# x11()
# par(mfrow=c(1,ncol(noises)))
# roc.plot(generate.roc(results,pval=FALSE),legend=noises)
# ## End(Not run)
power = t(drop(calculate.power(results,.95,`>`)))
power.cor = t(drop(calculate.power(results.cor,.95,`>`)))
#cor is excellent at linear relationships, not so much for circular relationships:
#(increasing power is an artifact of low number of simulation, increase nsim in run.tests)
power.plot(list(cor=power.cor, novelTest=power),noises,show.legend="topright",mains=c("Linear", 
	"Circle")) 

Run the code above in your browser using DataLab