rvm
function currently supports only regression.
"rvm"(x, data=NULL, ..., subset, na.action = na.omit)
"rvm"(x, ...)
"rvm"(x, y, type="regression", kernel="rbfdot", kpar="automatic", alpha= ncol(as.matrix(x)), var=0.1, var.fix=FALSE, iterations=100, verbosity = 0, tol = .Machine$double.eps, minmaxdiff = 1e-3, cross = 0, fit = TRUE, ... , subset, na.action = na.omit)
"rvm"(x, y, type = "regression", kernel = "stringdot", kpar = list(length = 4, lambda = 0.5), alpha = 5, var = 0.1, var.fix = FALSE, iterations = 100, verbosity = 0, tol = .Machine$double.eps, minmaxdiff = 1e-3, cross = 0, fit = TRUE, ..., subset, na.action = na.omit)
kernelMatrix
of the training data
or a list of character vectors (for use with the string
kernel). Note, that the intercept is always excluded, whether
given in the formula or not.x
. Can be either
a factor (for classification tasks) or a numeric vector (for
regression).rvm
can only be used for regression at the moment.rbfdot
Radial Basis kernel "Gaussian"
polydot
Polynomial kernel
vanilladot
Linear kernel
tanhdot
Hyperbolic tangent kernel
laplacedot
Laplacian kernel
besseldot
Bessel kernel
anovadot
ANOVA RBF kernel
splinedot
Spline kernel
stringdot
String kernel
The kernel parameter can also be set to a user defined function of class kernel by passing the function name as an argument.
sigma
inverse kernel width for the Radial Basis
kernel function "rbfdot" and the Laplacian kernel "laplacedot".
degree, scale, offset
for the Polynomial kernel "polydot"
scale, offset
for the Hyperbolic tangent kernel
function "tanhdot"
sigma, order, degree
for the Bessel kernel "besseldot".
sigma, degree
for the ANOVA kernel "anovadot".
length, lambda, normalized
for the "stringdot" kernel
where length is the length of the strings considered, lambda the
decay factor and normalized a logical parameter determining if the
kernel evaluations should be normalized.
Hyper-parameters for user defined kernels can be passed through the
kpar parameter as well. In the case of a Radial Basis kernel function (Gaussian)
kpar can also be set to the string "automatic" which uses the heuristics in
sigest
to calculate a good sigma
value for the
Gaussian RBF or Laplace kernel, from the data.
(default = "automatic").
NA
s are
found. The default action is na.omit
, which leads to rejection of cases
with missing values on any required variable. An alternative
is na.fail
, which causes an error if NA
cases
are found. (NOTE: If given, this argument must be named.)fit = TRUE
)ksvm
# create data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.05)
# train relevance vector machine
foo <- rvm(x, y)
foo
# print relevance vectors
alpha(foo)
RVindex(foo)
# predict and plot
ytest <- predict(foo, x)
plot(x, y, type ="l")
lines(x, ytest, col="red")
Run the code above in your browser using DataLab