
Density, distribution function, quantile function and random
generation for the Weibull distribution with parameters shape
and scale
.
dweibull(x, shape, scale = 1, log = FALSE)
pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rweibull(n, shape, scale = 1)
vector of quantiles.
vector of probabilities.
number of observations. If length(n) > 1
, the length
is taken to be the number required.
shape and scale parameters, the latter defaulting to 1.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are
dweibull
gives the density,
pweibull
gives the distribution function,
qweibull
gives the quantile function, and
rweibull
generates random deviates.
Invalid arguments will result in return value NaN
, with a warning.
The length of the result is determined by n
for
rweibull
, and is the maximum of the lengths of the
numerical arguments for the other functions.
The numerical arguments other than n
are recycled to the
length of the result. Only the first elements of the logical
arguments are used.
The Weibull distribution with shape
parameter scale
parameter
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.
Distributions for other standard distributions, including the Exponential which is a special case of the Weibull distribution.
# NOT RUN {
x <- c(0, rlnorm(50))
all.equal(dweibull(x, shape = 1), dexp(x))
all.equal(pweibull(x, shape = 1, scale = pi), pexp(x, rate = 1/pi))
## Cumulative hazard H():
all.equal(pweibull(x, 2.5, pi, lower.tail = FALSE, log.p = TRUE),
-(x/pi)^2.5, tolerance = 1e-15)
all.equal(qweibull(x/11, shape = 1, scale = pi), qexp(x/11, rate = 1/pi))
# }
Run the code above in your browser using DataLab