# Load and process data set
data(bmiData)
# define response y to be the negative 12 month
# change in BMI from baseline
bmiData$y <- -100*(bmiData$month12BMI - bmiData$baselineBMI) /
bmiData$baselineBMI
# Constant propensity model
moPropen <- buildModelObj(model = ~1,
solver.method = 'glm',
solver.args = list('family'='binomial'),
predict.method = 'predict.glm',
predict.args = list(type='response'))
# Create modelObj object for main effect component
moMain <- buildModelObj(model = ~ gender + parentBMI + month4BMI,
solver.method = 'lm')
## Not run: ------------------------------------
# rwlRes <- rwl(moPropen = moPropen, moMain = moMain,
# data = bmiData, reward = bmiData$y, txName = "A2",
# regime = ~ parentBMI + month4BMI)
#
# ##Available methods
#
# # Coefficients of the propensity score regression
# coef(rwlRes)
#
# # Description of method used to obtain object
# DTRstep(rwlRes)
#
# # Estimated value of the optimal treatment regime for training set
# estimator(rwlRes)
#
# # Value object returned by propensity score regression method
# fitObject(rwlRes)
#
# # Summary of optimization routine
# optimObj(rwlRes)
#
# # Estimated optimal treatment for training data
# optTx(rwlRes)
#
# # Estimated optimal treatment for new data
# optTx(rwlRes, bmiData)
#
# # Value object returned by outcome regression method
# outcome(rwlRes)
#
# # Plots if defined by propensity regression method
# dev.new()
# par(mfrow = c(2,4))
# plot(rwlRes)
#
# dev.new()
# par(mfrow = c(2,4))
# plot(rwlRes, suppress = TRUE)
#
# # Value object returned by propensity score regression method
# propen(rwlRes)
#
# # Parameter estimates for decision function
# regimeCoef(rwlRes)
#
# # Residuals used on method
# residuals(rwlRes)
#
# # Show main results of method
# show(rwlRes)
#
# # Show summary results of method
# summary(rwlRes)
#
#
## ---------------------------------------------
Run the code above in your browser using DataLab