# NOT RUN {
## sampSize examples
## first define the target function
## first calculate the power to detect all of the models in the candidate set
fmodels <- Mods(linear = NULL, emax = c(25),
logistic = c(50, 10.88111), exponential=c(85),
betaMod=matrix(c(0.33,2.31,1.39,1.39), byrow=TRUE, nrow=2),
doses = c(0,10,25,50,100,150), placEff=0, maxEff=0.4,
addArgs = list(scal=200))
## contrast matrix to use
contMat <- optContr(fmodels, w=1)
## this function calculates the power under each model and then returns
## the average power under all models
tFunc <- function(n){
powVals <- powMCT(contMat, altModels=fmodels, n=n, sigma = 1,
alpha=0.05)
mean(powVals)
}
## assume we want to achieve 80% average power over the selected shapes
## and want to use a balanced allocations
# }
# NOT RUN {
sSize <- sampSize(upperN = 80, targFunc = tFunc, target=0.8,
alRatio = rep(1,6), verbose = TRUE)
sSize
## Now the same using the convenience sampSizeMCT function
sampSizeMCT(upperN=80, contMat = contMat, sigma = 1, altModels=fmodels,
power = 0.8, alRatio = rep(1, 6), alpha = 0.05)
## Alternatively one can also specify an S matrix
## covariance matrix in one observation (6 total observation result in a
## variance of 1 in each group)
S <- 6*diag(6)
## this uses df = Inf, hence a slightly smaller sample size results
sampSizeMCT(upperN=500, contMat = contMat, S=S, altModels=fmodels,
power = 0.8, alRatio = rep(1, 6), alpha = 0.05, Ntype = "total")
## targN examples
## first calculate the power to detect all of the models in the candidate set
fmodels <- Mods(linear = NULL, emax = c(25),
logistic = c(50, 10.88111), exponential=c(85),
betaMod=matrix(c(0.33,2.31,1.39,1.39), byrow=TRUE, nrow=2),
doses = c(0,10,25,50,100,150), placEff=0, maxEff=0.4,
addArgs = list(scal=200))
## corresponding contrast matrix
contMat <- optContr(fmodels, w=1)
## define target function
tFunc <- function(n){
powMCT(contMat, altModels=fmodels, n=n, sigma = 1, alpha=0.05)
}
powVsN <- targN(upperN = 100, lowerN = 10, step = 10, tFunc,
alRatio = rep(1, 6))
plot(powVsN)
## the same can be achieved using the convenience powN function
## without the need to specify a target function
powN(upperN = 100, lowerN=10, step = 10, contMat = contMat,
sigma = 1, altModels = fmodels, alpha = 0.05, alRatio = rep(1, 6))
# }
Run the code above in your browser using DataLab