## Not run:
# data(BloodBrain)
#
# ## Use a GAM is the filter, then fit a random forest model
# set.seed(1)
# RFwithGAM <- sbf(bbbDescr, logBBB,
# sbfControl = sbfControl(functions = rfSBF,
# verbose = FALSE,
# seeds = sample.int(100000, 11),
# method = "cv"))
# RFwithGAM
#
#
# ## A simple example for multivariate scoring
# rfSBF2 <- rfSBF
# rfSBF2$score <- function(x, y) apply(x, 2, rfSBF$score, y = y)
#
# set.seed(1)
# RFwithGAM2 <- sbf(bbbDescr, logBBB,
# sbfControl = sbfControl(functions = rfSBF2,
# verbose = FALSE,
# seeds = sample.int(100000, 11),
# method = "cv",
# multivariate = TRUE))
# RFwithGAM2
#
#
# ## End(Not run)
Run the code above in your browser using DataLab