Learn R Programming

ggplot2 (version 2.2.1)

scale_colour_hue: Evenly spaced colours for discrete data

Description

This is the default colour scale for categorical variables. It maps each level to an evenly spaced hue on the colour wheel. It does not generate colour-blind safe palettes.

Usage

scale_colour_hue(..., h = c(0, 360) + 15, c = 100, l = 65, h.start = 0, direction = 1, na.value = "grey50")
scale_fill_hue(..., h = c(0, 360) + 15, c = 100, l = 65, h.start = 0, direction = 1, na.value = "grey50")

Arguments

...
Other arguments passed on to discrete_scale to control name, limits, breaks, labels and so forth.
h
range of hues to use, in [0, 360]
c
chroma (intensity of colour), maximum value varies depending on combination of hue and luminance.
l
luminance (lightness), in [0, 100]
h.start
hue to start at
direction
direction to travel around the colour wheel, 1 = clockwise, -1 = counter-clockwise
na.value
Colour to use for missing values

See Also

Other colour scales: scale_alpha, scale_colour_brewer, scale_colour_gradient, scale_colour_grey

Examples

Run this code

dsamp <- diamonds[sample(nrow(diamonds), 1000), ]
(d <- ggplot(dsamp, aes(carat, price)) + geom_point(aes(colour = clarity)))

# Change scale label
d + scale_colour_hue()
d + scale_colour_hue("clarity")
d + scale_colour_hue(expression(clarity[beta]))

# Adjust luminosity and chroma
d + scale_colour_hue(l = 40, c = 30)
d + scale_colour_hue(l = 70, c = 30)
d + scale_colour_hue(l = 70, c = 150)
d + scale_colour_hue(l = 80, c = 150)

# Change range of hues used
d + scale_colour_hue(h = c(0, 90))
d + scale_colour_hue(h = c(90, 180))
d + scale_colour_hue(h = c(180, 270))
d + scale_colour_hue(h = c(270, 360))

# Vary opacity
# (only works with pdf, quartz and cairo devices)
d <- ggplot(dsamp, aes(carat, price, colour = clarity))
d + geom_point(alpha = 0.9)
d + geom_point(alpha = 0.5)
d + geom_point(alpha = 0.2)

# Colour of missing values is controlled with na.value:
miss <- factor(sample(c(NA, 1:5), nrow(mtcars), replace = TRUE))
ggplot(mtcars, aes(mpg, wt)) + geom_point(aes(colour = miss))
ggplot(mtcars, aes(mpg, wt)) +
  geom_point(aes(colour = miss)) +
  scale_colour_hue(na.value = "black")

Run the code above in your browser using DataLab