# NOT RUN {
data(Titanic)
titanic <- as.data.frame(Titanic)
scpcp(titanic)
#scpcp(titanic, level.width=0)
#scpcp(titanic, gap=0)
#default with highlighting
scpcp(titanic, sel="data[,4]")
# random colors like for instance from a clustering
scpcp(titanic, sel="sample(1:6,nrow(data),T)")
# another one with some formal changes
require(scales)
scpcp(data=titanic,sel="Sex=='Male' & Survived=='Yes'", sel.palette = "w",
col.opt=list(alpha=0.7,border=alpha(1,0.3)), gap = 0.5, level.width= 0.3)
# }
# NOT RUN {
# mushroom data from the UCI machine learning repository
data(agaricus)
MR <- agaricus
levels(MR$stalk_root) <- c(levels(MR$stalk_root),"N/A")
MR$stalk_root[which(is.na(MR$stalk_root))] <- "N/A"
op <- optile(MR[,1:12], method="joint")
scpcp(op, sel = "odor",sel.palette="w",
col.opt = list(border = alpha(1,0.1)), lab.opt=list(rot=45))
# ADAC ecotest data with four clusterings (k-means, mclust, hc Ward, hc complete)
data(eco)
# illustrate reordering success using coloring
scpcp(eco[,13:16], sel = "data[,1]", sel.palette="d")
scpcp(optile(eco[,13:16]), sel = "data[,1]", sel.palette="d",
col.opt = list(border=alpha(1,0.1)))
# car classes (lower to upper class)
eco$Klasse <- factor(eco$Klasse, levels = levels(eco$Klasse)[c(3,1,2,7,4,5,6)])
scpcp(eco[,17:20], sel = eco$Klasse, sel.palette="s", col.opt = list(h=140))
# the color variable included
scpcp(eco[,c(3,17:20)], sel = eco$Klasse, sel.palette="s",
col.opt = list(h=140),lab.opt = list(abbr=5))
# }
Run the code above in your browser using DataLab