
NA
is returned. Similarly, when there are no negative
results, specificity is not defined and a value of NA
is returned. Similar
statements are true for predictive values.
The positive predictive value is defined as the percent of predicted positives that
are actually positive while the negative predictive value is defined as the percent
of negative positives that are actually negative.sensitivity(data, ...)
## S3 method for class 'default':
sensitivity(data, reference, positive = levels(reference)[1], ...)
## S3 method for class 'table':
sensitivity(data, positive = rownames(data)[1], ...)
## S3 method for class 'matrix':
sensitivity(data, positive = rownames(data)[1], ...)specificity(data, ...)
## S3 method for class 'default':
specificity(data, reference, negative = levels(reference)[-1], ...)
## S3 method for class 'table':
specificity(data, negative = rownames(data)[-1], ...)
## S3 method for class 'matrix':
specificity(data, negative = rownames(data)[-1], ...)
posPredValue(data, ...)
## S3 method for class 'default':
posPredValue(data, reference, positive = levels(reference)[1],
prevalence = NULL, ...)
## S3 method for class 'table':
posPredValue(data, positive = rownames(data)[1], prevalence = NULL, ...)
## S3 method for class 'matrix':
posPredValue(data, positive = rownames(data)[1], prevalence = NULL, ...)
negPredValue(data, ...)
## S3 method for class 'default':
negPredValue(data, reference, negative = levels(reference)[2],
prevalence = NULL, ...)
## S3 method for class 'table':
negPredValue(data, negative = rownames(data)[-1], prevalence = NULL, ...)
## S3 method for class 'matrix':
negPredValue(data, negative = rownames(data)[-1], prevalence = NULL, ...)
table
or matrix
functions, a table or matric object, respectively.
The formulas used here are:
See the references for discusions of the statistics.
Altman, D.G., Bland, J.M. (1994) ``Diagnostic tests 1: sensitivity and specificity,'' British Medical Journal, vol 308, 1552.
Altman, D.G., Bland, J.M. (1994) ``Diagnostic tests 2: predictive values,'' British Medical Journal, vol 309, 102.
confusionMatrix
###################
## 2 class example
lvs <- c("normal", "abnormal")
truth <- factor(rep(lvs, times = c(86, 258)),
levels = rev(lvs))
pred <- factor(
c(
rep(lvs, times = c(54, 32)),
rep(lvs, times = c(27, 231))),
levels = rev(lvs))
xtab <- table(pred, truth)
sensitivity(pred, truth)
sensitivity(xtab)
posPredValue(pred, truth)
posPredValue(pred, truth, prevalence = 0.25)
specificity(pred, truth)
negPredValue(pred, truth)
negPredValue(xtab)
negPredValue(pred, truth, prevalence = 0.25)
prev <- seq(0.001, .99, length = 20)
npvVals <- ppvVals <- prev * NA
for(i in seq(along = prev))
{
ppvVals[i] <- posPredValue(pred, truth, prevalence = prev[i])
npvVals[i] <- negPredValue(pred, truth, prevalence = prev[i])
}
plot(prev, ppvVals,
ylim = c(0, 1),
type = "l",
ylab = "",
xlab = "Prevalence (i.e. prior)")
points(prev, npvVals, type = "l", col = "red")
abline(h=sensitivity(pred, truth), lty = 2)
abline(h=specificity(pred, truth), lty = 2, col = "red")
legend(.5, .5,
c("ppv", "npv", "sens", "spec"),
col = c("black", "red", "black", "red"),
lty = c(1, 1, 2, 2))
###################
## 3 class example
library(MASS)
fit <- lda(Species ~ ., data = iris)
model <- predict(fit)$class
irisTabs <- table(model, iris$Species)
## When passing factors, an error occurs with more
## than two levels
sensitivity(model, iris$Species)
## When passing a table, more than two levels can
## be used
sensitivity(irisTabs, "versicolor")
specificity(irisTabs, c("setosa", "virginica"))
Run the code above in your browser using DataLab