library(sjPlot)
dummy <- sample(1:4, 40, replace = TRUE)
sjp.frq(dummy)
dummy <- set_labels(dummy, c("very low", "low", "mid", "hi"))
sjp.frq(dummy)
# force using all labels, even if not all labels
# have associated values in vector
x <- c(2, 2, 3, 3, 2)
# only two value labels
x <- set_labels(x, c("1", "2", "3"))
x
# or use:
# set_labels(x) <- c("1", "2", "3")
sjp.frq(x)
# all three value labels
x <- set_labels(x, c("1", "2", "3"), force.labels = TRUE)
x
sjp.frq(x)
# create vector
x <- c(1, 2, 3, 2, 4, NA)
# add less labels than values
x <- set_labels(x, c("yes", "maybe", "no"), force.values = FALSE)
x
# add all necessary labels
x <- set_labels(x, c("yes", "maybe", "no"), force.values = TRUE)
x
# set labels and missings
x <- c(1, 1, 1, 2, 2, -2, 3, 3, 3, 3, 3, 9)
x <- set_labels(x, c("Refused", "One", "Two", "Three", "Missing"))
x
x <- set_na(x, c(-2, 9), as.attr = TRUE)
x
frq(as_labelled(x))
# set labels via named vector,
# not using all possible values
data(efc)
get_labels(efc$e42dep)
x <- set_labels(efc$e42dep, c(`independent` = 1,
`severe dependency` = 2,
`missing value` = 9))
get_labels(x, include.values = "p")
get_labels(x, include.values = "p", include.non.labelled = TRUE)
# setting same value labels to multiple vectors
# create a set of dummy variables
dummy1 <- sample(1:4, 40, replace = TRUE)
dummy2 <- sample(1:4, 40, replace = TRUE)
dummy3 <- sample(1:4, 40, replace = TRUE)
# put them in list-object
dummies <- list(dummy1, dummy2, dummy3)
# and set same value labels for all three dummies
dummies <- set_labels(dummies, c("very low", "low", "mid", "hi"))
# see result...
get_labels(dummies)
Run the code above in your browser using DataLab