# NOT RUN {
# create random variable
dummy <- sample(1:8, 100, replace = TRUE)
# show value distribution
table(dummy)
# set value 1 and 8 as missings
dummy <- set_na(dummy, na = c(1, 8))
# show value distribution, including missings
table(dummy, useNA = "always")
# add named vector as further missing value
set_na(dummy, na = c("Refused" = 5), as.tag = TRUE)
# see different missing types
library(haven)
library(sjlabelled)
print_tagged_na(set_na(dummy, na = c("Refused" = 5), as.tag = TRUE))
# create sample data frame
dummy <- data.frame(var1 = sample(1:8, 100, replace = TRUE),
var2 = sample(1:10, 100, replace = TRUE),
var3 = sample(1:6, 100, replace = TRUE))
# set value 2 and 4 as missings
dummy %>% set_na(na = c(2, 4)) %>% head()
dummy %>% set_na(na = c(2, 4), as.tag = TRUE) %>% get_na()
dummy %>% set_na(na = c(2, 4), as.tag = TRUE) %>% get_values()
data(efc)
dummy <- data.frame(
var1 = efc$c82cop1,
var2 = efc$c83cop2,
var3 = efc$c84cop3
)
# check original distribution of categories
lapply(dummy, table, useNA = "always")
# set 3 to NA for two variables
lapply(set_na(dummy, var1, var3, na = 3), table, useNA = "always")
# drop unused factor levels when being set to NA
x <- factor(c("a", "b", "c"))
x
set_na(x, na = "b", as.tag = TRUE)
set_na(x, na = "b", drop.levels = FALSE, as.tag = TRUE)
# set_na() can also remove a missing by defining the value label
# of the value that should be replaced with NA. This is in particular
# helpful if a certain category should be set as NA, however, this category
# is assigned with different values accross variables
x1 <- sample(1:4, 20, replace = TRUE)
x2 <- sample(1:7, 20, replace = TRUE)
x1 <- set_labels(x1, labels = c("Refused" = 3, "No answer" = 4))
x2 <- set_labels(x2, labels = c("Refused" = 6, "No answer" = 7))
tmp <- data.frame(x1, x2)
get_labels(tmp)
get_labels(set_na(tmp, na = "No answer"))
get_labels(set_na(tmp, na = c("Refused", "No answer")))
# show values
tmp
set_na(tmp, na = c("Refused", "No answer"))
# }
Run the code above in your browser using DataLab