# NOT RUN {
# find the point estimate---mean number of hours worked per week
point_estimate <- gss %>%
specify(response = hours) %>%
calculate(stat = "mean") %>%
dplyr::pull()
# ...and a null distribution
null_dist <- gss %>%
# ...we're interested in the number of hours worked per week
specify(response = hours) %>%
# hypothesizing that the mean is 40
hypothesize(null = "point", mu = 40) %>%
# generating data points for a null distribution
generate(reps = 1000, type = "bootstrap") %>%
# finding the null distribution
calculate(stat = "mean")
# find a confidence interval around the point estimate
ci <- null_dist %>%
get_confidence_interval(point_estimate = point_estimate,
# at the 95% confidence level
level = .95,
# using the standard error method
type = "se")
# and plot it!
null_dist %>%
visualize() +
shade_confidence_interval(ci)
# or just plot the bounds
null_dist %>%
visualize() +
shade_confidence_interval(ci, fill = NULL)
# More in-depth explanation of how to use the infer package
# }
# NOT RUN {
vignette("infer")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab